
Run Control Parameters at DØ

Marc Paterno
CD Special Assignments, FNAL

November 30, 2000

Abstract

This document is a short guide to the use of the RCP system for
managing run control parameters (RCPs) at DØ.

Please note Appendix C, “Common Tasks”, found at the end of this
document, contains instructions for many of the simple tasks one may
wish to perform.

1 RCPs and Packages

At DØ, most run control parameter sets (RCPs) are associated with a specific
software (CVS) package. Parameter sets that are to be used for official recon-
struction must be associated with a CVS package; the release managers use this
as the method for controlling what gets into the official RCP database.

In order to allow two packages to have parameter sets with the same name
without conflict, parameter sets are named by both the name of their own-
ing package and their own name. Such flexibility may be useful for software
development and data analysis tasks

For purposes other than official reconstruction, it is possible to associate a
parameter set with a “package” that is not an actual CVS package. Such pa-
rameter sets can not at this time be entered into the “official” RCP database
(which contains all the RCPs used by the reconstruction program), but they
may be entered into a “personal” RCP database. In the future, DØ may es-
tablish “physics group” RCP databases, to provide a level of management more
strict than the “personal” database, but possibly less strict than the “official”
database.

Framework RCPs are handled in a special manner. These RCPs are never
read from a database; you must always supply the framework executable with a
filename (either absolute or relative from the current working directory) for the
RCP file to be read. This is the only case in which an RCP object cannot be
extracted from the database (without the need for a local RCP file). It is also
the only case in which an RCP script will be picked up from a directory other
than the package directories, as described in

Section 5.

1

The use of untracked parameters for some elements in framework RCPs may
be useful; this feature was first introduced in release rcp v00-04-00. See the
document A Guide for the Use of Untracked Parameters in RCPs at DØ for a
description of the official DØ policy on the use of untracked parameters.

2 Use of RCP objects

RCP objects (instances of the class edm::RCP) are collections of name-value
pairs, where the name is a C++ string and the value is one of the types listed
in Table 1.

bool
int std::vector<int>
float std::vector<float>
double std::vector<double>
std::string std::vector<std::string>
RCP std::vector<RCP>

Table 1: Data types supported by the RCP system.

Note that std::vector<bool> is not one of the allowed types; use of this type
in any C++ code is discouraged.

2.1 Normal parameters

RCP objects provide access to the parameters they contain by means of various
“get” functions. They provide no way to modify these values; an RCP object
is essentially a readonly object. When asked for a contained parameter, that
parameter is returned by value, so that the function call can be used as an
expression – for example, in the colon-initialization list of a constructor for a
class. Because of this syntax, an RCP object signals that it could not return a
parameter of a given name by throwing an exception; specifically, an instance
of the class XRCPNotFound. An example of the use of an RCP object is given
in

Figure 1. This example shows how to obtain a parameter of type double
which has the name “ETminimum”, and how to handle the exception which is
thrown if no such parameter is found.

RCP objects are obtained by one of two methods: they may be extracted
from another RCP object, or they may be obtained from an RCPManager (an
instance of class RCPManager). Each RCP object is labeled with an identi-
fier (an instance of the class RCPID). The RCPID consists of two parts: a
“database id” and a “sequence number”. The “database ID” indicates in what
database this parameter set lives; the “sequence number” is an identifier which
is unique to this set of parameters, within that database. Since.Since an RCPID
is unique only within the database that issues it, it is important that all official

2

file:UntrackedParameters.htm

void someFunction(const edm::RCP& r)
{
try
{
double thresh = r.getString("ETminimum");
// Code here would use the value of thresh...

}
catch (const edm::XRCPNotFound& x)
{
// If there is a missing parameter, we catch the
// appropriate exception here. (Other exceptions are
// allowed to propagate past this catch block).
// Handle the error here.

}
} // void someFunction(const edm::RCP& r)

Figure 1: Example of use of the class RCP.

reconstruction use the same database information. The class FileSystemDB has
been provided to meet this need; it is a lightweight “database” designed for the
purpose of handling RCP objects, and issuing RCPIDs. The files that make
up the body of data managed by the class FileSystemDB are ASCII files, so
that they are platform independent. It is important not to confuse these files,
which are not intended to be directly modified by users, with the RCP scripts
discussed in Section 5.

Note that the uniqueness refers to the set of parameters (the name-value
pairs), not to any name associated with the RCP object – most importantly, not
to the name of any script that was read to produce the RCP object. Because the
uniqueness of the RCPID refers to the parameters themselves, the EDM makes
use of these RCPIDs to help identify the genesis of “chunks” in the Event.

2.2 Untracked Parameters

New to version 0.4 of the RCP system is the concept of untracked parameters.
Untracked parameters are parameters that can be read from an RCP script,
but are never recorded in an RCP database. The only data types allowed for
untracked parameters are bool, int, and std::string. Untracked parameters
can be used to control those parts of a program (or framework package) that
do not affect the results of reconstruction. For example, one might use an
untracked int to control the level of verbosity of some standard output, or an
untracked string to provide the name of an output ntuple file. DØ policy is
that these parameters may never be used to configure parameters of a program
(or framework module) that affect the results of reconstruction.

The syntax for inclusion of an untracked parameter in a script is:
untracked <type> <name> = <value>

3

where <type> is one of bool, int, or std::string, <name> is a parameter name,
and <value> is a string that can be converted to a parameter by the normal
rules for a parameter of that type.

Because untracked parameters are never recorded in any RCP database, an
RCP will only contain an untracked parameter if the parameter set stored in
that RCP was created by reading an RCP script. RCPs that are retrieved by
querying and RCPManager for the RCP associated with a given RCPID will
never contain any untracked parameters. Since nested RCPs are effectively
always retrieved by this method, an RCP object obtained from within another
RCP object will also never carry untracked parameters. See the document A
Guide for the Use of Untracked Parameters in RCPs at DØ for a more detailed
explanation of this issue, and for the official DØ policy regarding the use of
untracked parameters.

Note that this means the reconstruction run on the production farm will
never see untracked parameters; a good synonym for “untracked parameter”
might be “parameter for which reconstruction always uses the default”.

Because RCPs retrieved from an RCP database never carry untracked pa-
rameters, it is necessary for the syntax for access to untracked parameters to
be different form that for normal parameters. To obtain an untracked pa-
rameter from an RCP object, use the member function getUntrackedBool(),
getUntrackedInt, or getUntrackedString. Each of these functions takes two
arguments: the first is a std::string, giving the name of the parameter of inter-
est; the second is a default value, to be returned if the RCP does not contain
this untracked parameter.1 One beneficial side effect of having untracked pa-
rameters accessed via a different signature is that it allows code inspections to
localize the use of untracked parameters more easily. Algorithm group leaders
are encouraged to monitor the use of untracked parameters, to assure that those
things which need to be recorded in the RCP database are being recorded.

Figure 2 shows an example of code that uses untracked parameters. Note the
absence of try and catch blocks in this example – since untracked parameters
can return a default value, there is no need to indicate an missing parameter by
throwing an exception.

3 Use of RCPManager

The class RCPManager is a singleton.2 One obtains access to the sole instance
of RCPManager by calling the static member function instance(), which re-
turns a pointer to the RCPManager. One can then obtain RCP objects from
the manager through the functions extract(const std::string& pkgName,
const std::string& objName) and extract(const edm::RCPID& id).

1Note that the returning of a default is one of the reasons that untracked parameters of
other types are not provided. Using default values, available only by inspecting the code,
would defeat the aim of having configuration parameters available to later reconstruction and
analysis programs.

2See Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Soft-
ware.

4

file:UntrackedParameters.htm
file:UntrackedParameters.htm

void someFunction(const edm::RCP& r)
{
int verbosity = r.getUntrackedInt("verbosity", 0);
bool makeNtup = r.getUntrackedBool("makeNtup", false);
if (verbosity > 0)
{
// Yap about our current status here...

}
if (makeNtup)
{
// do stuff to make an ntuple here ...

}
} // void someFunction(const edm::RCP& r)

Figure 2: Example of use of untracked parameters.

The function extract(const edm::RCPID& id) is generally useful when one
has obtained an RCPID from an object in an event. It is the other function
that is usually used to obtain a parameter set. The function extract(const
std::string& pkgName, const std::string& objName) will extract from the
(RCP) database the parameter set named “objName” associated with the (CVS)
package “pkgName”. This is the same nomenclature as is used in the format of
the RCP scripts themselves.

An example of the use of the class RCPManager is shown in Figure 3. This
example shows the code necessary to access the singleton instance of RCPMan-
ager, and that necessary to get an RCP object from that manager.

4 RCP Databases

The RCPManager makes use of one or more RCP databases, from which it
retrieves parameter sets and to which it may add parameter sets. Each RCP-
Manager can make use of any number of readonly databases, and zero or one
writable database. The list of databases to be used are specified by the environ-
ment variable RCP DATABASE PATH.

The environment variable RCP DATABASE PATH is to be defined to be a colon-
separated list of database specifications. Each database specification comes in
two parts: the first is the name of the database, and the second is the name of
the class to be used to communicate with the database. The databases named
in this list are those that will be searched, in the given order, in order to find
a parameter set. Under normal conditions, the last database named in this
list is used as the writable database, and all others (there may be zero others)
are used as readonly databases. No more than one database may be used in
writable mode in a single program. To indicate that no writable databases are
to be used (all databases are to be used in readonly mode), one must define

5

void someFunction()
{
edm::RCPManager* pman = edm::RCPManager::instance();
// No need to check the return value; if the RCPManager
// instance can’t be created, an exception will be thrown.
// The try block below is to handle exceptions thrown if we
// can’t get the parameter sets we request.
try
{
// Get the parameter set named ’golden’, from the package
// ’EMID’
edm::RCP r1 = pman->extract("EMID", "golden");
// ... now do something useful with the parameters ...

}
catch (const edm::XRCP& x)
{
// Handle the error condition here.
// ...

}
}

Figure 3: Use of the class RCPManager.

RCP DATABASE PATH with a final forward slash (/). For example, with the defi-
nition RCP DATABASE PATH=“official/FileSystemDB:personal/FileSystemDB”
two databases are used. The first, named “official”, will be used in readonly
mode. The second, named “personal”, will be used in writable mode. If, instead,
one had
RCP DATABASE PATH=“official/FileSystemDB:personal/FileSystemDB/”
(note the trailing forward slash) then both databases would be used in readonly
mode.

As of release t00.91.00 of the DØ offline software, the allowable database
names are “official” (wherein all the parameter sets associated with released
code will reside), and “personal” (which indicates a database that will be created
for the personal use of the user). In release 0.4 of the RCP system, the available
database classes are FileSystemDB and RCPDatabaseInMemory.

4.1 RCPDatabaseInMemory

Use of RCPDatabaseInMemory is appropriate for testing purposes only. This
class provides no permanence for RCPIDs past the end of the running program
– as the class name says, the “database” kept is only in memory, and is thus
deleted at the end of the execution of the program.

6

4.2 FileSystemDB

The class FileSystemDB is appropriate for general use. In order to use this
class, one must define two environment variables:
RCP FILESYSTEMDB READONLY DIR and RCP FILESYSTEMDB WRITABLE DIR.

RCP FILESYSTEMDB READONLY DIR is the name of the directory in which the
database files for the readonly databases used by the RCPManager are to be
found. This environment variable is generally set to an appropriate value by
the command setup D0RunII.

RCP FILESYSTEMDB WRITABLE DIR is the name of the directory in which the
database files for the writable database used by the RCPManager is to be found.
This environment variable is not set by the command setup D0RunII; it should
be set by the user to an appropriate value. A reasonable choice is to define this
as the default login directory of the user.

Under no circumstances should non-experts alter any of the files that make
up a FileSystemDB database. These files are automatically managed by the
RCP system itself, and alteration of any one of the files may lead to a corruption
of the database.

5 Reading an RCP Script

The RCP system has been designed to provide automatic storage of parameter
sets. In a controlled environment such as the reconstruction farm, parameter
sets will only be obtained from a downloaded RCP database. In the development
and analysis environments, however, such control is too strict. Thus the RCP
system has the ability to read parameter sets from a secondary source: ASCII
files called RCP scripts. The formal grammar of the RCP script is given (as
a YACC grammar) in the file rcp parse.y, which is part of the RCP source
code. A more concise (though less precise) summary of the syntax is given in
Appendix A.

In order for the RCP system to find a script, it must be located in the correct
directory. The RCP system uses an environment variable RCP SCRIPT BASE as
the base directory for starting the search. If this environment variable is not
defined, then the search begins in the current working directory. Under this base
directory, the system expects to find a directory structure of the same form as
that used by the SRT build environment. Specifically, the required directory
structure under the base directory is: (1) a subdirectory with the name of the
package with which the RCP is associated, under which is (2) a subdirectory
named “rcp”, in which is to be found the RCP script itself. Thus, if RCP -
SCRIPT BASE is defined to be “∼user/test”, then the search for a script for an
RCP named <io packages ReadEvents> will look for a file “∼user/test/io pack-
ages/rcp/ReadEvents.rcp”.

If a script by this name is found, it will be read, and the parameter set it
defines will be searched for in the readonly databases. If a matching parameter
set is found, it will be returned to the user. If no matching parameter set

7

is found, then the system will look in the writable database for a matching
parameter set. If none is found in the writable database, then the system will
attempt to add this parameter set to the writable database. If this fails, then
an exception will be thrown by the system.

If no script by this name is found, then the databases are searched (in the
order given above) for a parameter set known by this name. The first one found
is returned. If none if found, then an exception will be thrown by the system.

8

A RCP Script Grammar

The exact grammar of RCP scripts is given in the file rcp parse.y, which is part
of the RCP source code. This appendix gives a more concise description.

Comments are denoted by two forward slashes, following the style of C++
comments. Comments can come at the beginning of a line, or at the end of a
line, as in C++ code.

Each entry in an RCP script defines a single parameter. The types of these
parameters are the following: bool, int, float, double, std::string, RCP, and
the vectors: std::vector<int>, std::vector<float>, std::vector<double>,
std::vector<std::string>, and std::vector<RCP>3. Each entry specifies the
name to be assigned to that parameter, and the value to be assigned to that
parameter.

The form of the line is:

type-tag name = assignment-statement

The type-tag must be one of the keywords in Table 2. The type of the param-
eter created is determined by the combination of the keyword and by whether
the assignment statement is a scalar-assignment or an aggregate-assignment.
An aggregate-assignment is indicated by containment within parentheses; any
other assignment is a scalar assignment.

type-tag parameter types
bool bool
int int and std::vector<int>

float float and std::vector<float>
double double and std::vector<double>
string std::string and std::vector<std::string>
RCP RCP and std::vector<RCP>

untracked bool bool
untracked int int

untracked string std::string

Table 2: The keywords recognized in an RCP script, and the associated param-
eter types.

Several of these types require special syntax. These types are listed below.
The numeric types int, float, and double all take assignment by a number of
the correct type.

3Note the std::vector<bool> is missing from the list. This is because the class
std::vector<bool> is not handled correctly by the KAI C++ compiler (v3.3f1), and also be-
cause this class has come into question by the C++ Standards committee.

9

A.1 bool

The value of a bool can be set with any of the following values: for false, use
“false”, “FALSE”, “False”, “F”, “f”, “off”, “OFF”, “no”, “No” or “NO”. For
true, use ”true”, “TRUE”, “True”, “T”, “t”, “on”, “ON”, “yes”, “Yes”, or
“YES”.

A.2 string

A string must be delimited by double quotes. Strings may include printable char-
acters and white space, including newlines. To include a double quote mark it-
self, it must be “escaped” by a backslash: "This is a \"quoted\" string".

A.3 RCP

An RCP is included by giving the name of the package with which the RCP
is associated and the name of the RCP object itself, within angle brackets:
<PackageName ObjectName>.

A.4 Untracked Parameters

Only the types bool, int, and std::string can be preceded by the modifier
untracked. Parameters marked as untracked (by use of the script keywork
untracked will not be entered into any RCP database, and are not consid-
ered as part of the parameter set for assignment of RCPIDs, nor for equality
comparisons. See section 2.2 for more details.

A.5 Examples

This section contains several examples of legal syntax for RCP scripts. Note
that the length of a vector created by defining a vector parameter is determined
by the number of entries one places in the parameter definition. There is no
facility for defining a larger vector, and filling only part of it.

A.6 “Interesting Features” of the New Parser

One of the changes between the old RCP system (used up to t00.64.00) and the
new RCP system (t00.65.00 and beyond) is the introduction of a new parser,
which understands a richer set of constructs (such as vectors). Here is a short
list of quirks in the parser used in t00.65.00, which I encountered while trying
to parse the set of RCPs present in t00.62.00 (which was the most recently
available test set, using during testing of the parser).

1. Trailing comments must contain whitespace between the end of the pre-
ceding value and the double-slash (or sharp) that introduces the comment.

10

// This a comment at the beginning of a line
This is also a comment at the beginning of a line
bool myBool = true // or false, if you prefer
int myInt = 21 // Trailing comments are also legal
float myFloat = 8.9 # Trailing comments can also follow a sharp
double myDouble = 0.5 // doubles are distinguished from floats
string myString = "This is a \"string\" with a quote embedded"
string string2 = "This string has
a newline in the middle of it"
RCP myRCP = <SomePackage SomeObject>
// The following are examples of vectors
// vectors of bools are not supported
int myIntVector = (1 2 3) // This makes a vector with 3 entries
float myFloatVector = (1.2) // A vector may have one entry
double myDoubleVector = () // Or even no entries
string myStringVector = ("Howdy" "Hi" "Good to see you")
RCP myRCPVector= (<P1 Obj1> <P2 Obj2>)

Figure 4: An example of legal RCP script syntax

Bad:
float x = 1.23// This will fail

Good:
float x = 1.23 // This is OK

This “feature” is caused by some difficulties with the regular expressions
recognized by flex; it may be relaxed in a future release.

2. Comments can be introduced only with two forward slashes or a sharp
sign (// or #). Backward slashes are not legal. This is by design; only
one file in t00.62.00 tried to use backward slashes.

3. It isn’t a good idea to have too many significant digits in a float constant.
std::numeric limits<float>, under KCC on both Linux and IRIX6,
and also under MSVC++ 6.0, all report that the number of significant
digits in a float is 6. If you need more, use a double.

This is a feature of the language; the (new) ability to use doubles in RCP
scripts should help solve the problem.

4. The parser will choke if you try to include another RCP which neither
exists in the database(s) you’re reading nor can be created from a script
that can be found under RCP SCRIPT BASE.

This is by design; such an RCP would be malformed, and is not allowed.
Note that you should receive an error message via email from the DØ

11

Release Managers if you have a malformed RCP in your package’s rcp
subdirectory; this is because such a malformed RCP can not be entered
into the RCP database. Sometimes you may receive a complaint that is a
result of a “cascade”, when you have included an RCP that was malformed
because an RCP that it included was malformed.

5. The parser sometimes chokes (well, only once really, and since I fixed some
other things in the parser this hasn’t happened again) on lines that contain
nothing but a comment, if that comment doesn’t start at the beginning
of the line.

I think this “feature” doesn’t exist any more, but if you have an example
of an RCP file with such a comment that does kill the parser, please send
me e-mail (paterno@fnal.gov) with the killer RCP file, so that I can
track down the bug.

12

B Environment Variable Summary

This appendix contains a summary of the environment variables used by the
RCP system.

B.1 The database path

The environment variable RCP DATABASE PATH is used to define which databases
are to be searched for parameter sets. Note that this is a list of databases and
class names, and not a list of directories, and this environment variable has
nothing to do with the searching for RCP scripts (files). See Section 4 for a
more complete description.

B.2 File System database

The environment variable RCP FILESYSTEMDB READONLY DIR defines a search list
of directories in which the class FileSystemDB will search for the database files
to be read for the readonly databases. This variable is generally set by the
command d0setwa. See Section 4.2 for a more complete description.

The environment variable RCP FILESYSTEMDB WRITABLE DIR defines the di-
rectory in which the class FileSystemDB will search for the database files to be
read and written to for the writable database. This variable is generally set by
the command d0setwa. See Section 4.2 for a more complete description.

B.3 RCP Scripts

The environment variable RCP SCRIPT BASE defines the directory from which
the search for RCP scripts (files) will begin. If this environment variable is
not defined, then the search begins from the current working directory. See
Section 5 for a more complete description.

B.4 Mapping Database names to Database IDs

The environment variable RCP DB NAMES FILE is used to find a file that provides
the mapping from database names to database IDs. This environment variable
is defined by d0setwa, and should not be modified by the user under normal
circumstances.

13

C Common Tasks

This section contains instructions (or suggestions) for how to perform some
common tasks related to the management or use of RCPs.

C.1 How do I run component and integrated tests?

There are several solutions possible, each of which may be achieved by defining
RCP SCRIPT BASE appropriately, and by copying RCP files if necessary.

Perhaps the simplest method is to define RCP SCRIPT BASE to be the base
directory of your test release (known in SRT as SRT PRIVATE CONTEXT. If you
put the scripts for all the RCPs you use in your tests in the “rcp” subdirectory
of your package, they will then be found by the system when you run your
tests. This allows you to modify the RCP scripts in place, and to have those
modifications seen by your tests.

It is also recommended that you give names to these scripts that will make it
clear to others that they are used for tests, and not for normal data processing.
These RCPs will be entered into the “official” RCP database, and will thus be
available for use by tests in other packages.

You should note that running such tests will populate your personal database
with the modified RCPs. If you want to get rid of these after your testing session,
and do not need to have a permanent record of the RCPIDs generated for these
RCPs, it is safe to delete the entire database directory, and to then recreate it
with the shell script rcp setup db.

C.2 How do I modify an RCP in a package I have checked
out?

If you want to modify an RCP in a package that you have checked out, all you
need to do is to modify the RCP script found in that package’s “rcp” directory.
If you have RCP SCRIPT BASE defined to be the top-level directory of your test
release (the same directory as the SRT environment variable SRT PRIVATE CON-
TEXT), the modified RCP script will be read, and the resulting RCP will be used
in your program. Note that this new parameter set will be entered into your
personal RCP database.

C.3 How do I modify an RCP in a package that I do not
have checked out?

This is almost identical to the scenario in Section C.2. All you need to do
is to create the appropriate directory structure (a subdirectory named for the
package from which you want to modify the RCP, and a subdirectory below
that named “rcp”). Into this directory structure, you copy the RCP script you
want to modify, and modify as needed. If you have RCP SCRIPT BASE defined to
be the top-level directory of your test release, the modified script will be read,
and the resulting RCP will be used in your program.

14

Note that this new parameter set will be entered into your personal RCP
database.

C.4 How do I run with only the RCPs in the official re-
lease?

The easiest method is to have RCP SCRIPT BASE point to a non-existent direc-
tory. Note that this is not the same as having RCP SCRIPT BASE undefined (see
Section 5). If RCP SCRIPT BASE points to a non-existent directory, then the
search for a script will never find one, and all the RCPs your program uses will
come from a database (either the official database, or, if not found there, from
you personal database).

C.5 How do I introduce a new RCP into my local test
release?

If you need to invent a new RCP, which hasn’t been used before, for a package
you are working on, all you need to do is to put the correctly named script into
the appropriately named directory. See Section C.2 for how to do so. This will
result in the new parameter set being added to your personal database. If you
need to introduce a new RCP to a package you are not working on, you merely
need to make the directory structure (described in Section C.2) and put the new
script there.

C.6 How do I introduce a new RCP into a release?

All RCPs in the “rcp” directory of your package will be added to the official
RCP database during the release procedure. If you have put the RCP script into
the “rcp” directory, and have requested a release of the package, the addition
(or updating) of the RCP database is automatic.

C.7 How do I add a new RCP to my personal database?

Any time you modify (or add) and RCP script to your local test release, and that
RCP script is read by the RCP system, the corresponding RCP is automatically
entered into your personal RCP database. No special action is required.

C.8 What happens if I delete my personal RCP database?

If you delete your personal RCP database, you will need to run the script
rcp setup db to create an empty personal database before you can begin to
put new RCPs into your now-empty personal database. Any RCPIDs issued
by the old (deleted) database will not be meaningless; the new database will
begin issuing IDs with number 1. Any data files you have written with the old
RCPIDs will now contain misleading information, since the RCPIDs issued by
your (deleted) personal database can no longer be resolved by that database –

15

or worse, they will be resolved incorrectly after you begin to populate your new
database.

It is recommended to delete your personal database only when you are sure
that none of the RCPIDs issued by that database need to be meaningful – for
example, after the end of a long testing session.

If you want to retain meaning for the RCPIDs you use in your analysis, you
should not delete your personal RCP database.

C.9 How do I set up the correct environment variables?

As of release t00.65.00 build 4, the command setup D0RunII [version] will set up
reasonable defaults for most of required environment variables.4 This does not
define the environment variable RCP SCRIPT BASE which may need to be reset
whenever you switch the test release base directory in which you are working.
To set this variable, use the command d0setwa (DØ set working area).

C.10 How are framework RCPs handled?

(This answer is a repeat of the information in Section 1.) In the first release of
the system, framework RCPs are handled in a special manner. These RCPs are
never read from a database; you must always supply the framework executable
with a filename (either absolute or relative from the current working directory)
for the RCP file to be read.

Note that this behavior is peculiar to framework RCPs. In all other cases,
an RCP

C.11 Why doesn’t my program pick up my modified
RCP?

If one is modifying one or more parameters for an algorithm that come from
an RCP object deeply nested under the framework RCP (either tracked and
untracked parameters), one should watch out for them coming from the database
rather than the local file. In order for parameters in a nested RCP to be
controlled by the contents of a local script, all of the RCPs from the top-level
framework RCP down to the RCP one is modifying must be present as local
scripts.

4Of course, the value of version must be at least t00.65.00.

16

	RCPs and Packages
	Use of RCP objects
	Normal parameters
	Untracked Parameters

	Use of RCPManager
	RCP Databases
	RCPDatabaseInMemory
	FileSystemDB

	Reading an RCP Script
	RCP Script Grammar
	bool
	string
	RCP
	Untracked Parameters
	Examples
	``Interesting Features'' of the New Parser

	Environment Variable Summary
	The database path
	File System database
	RCP Scripts
	Mapping Database names to Database IDs

	Common Tasks
	How do I run component and integrated tests?
	How do I modify an RCP in a package I have checked out?
	How do I modify an RCP in a package that I do not have checked out?
	How do I run with only the RCPs in the official release?
	How do I introduce a new RCP into my local test release?
	How do I introduce a new RCP into a release?
	How do I add a new RCP to my personal database?
	What happens if I delete my personal RCP database?
	How do I set up the correct environment variables?
	How are framework RCPs handled?
	Why doesn't my program pick up my modified RCP?

